

Low Profile, IPM Gate Drive Interface Optocoupler

DESCRIPTION

The SJS-481 series fast speed optocoupler contains a LED and photo detector with built-in Schmitt trigger to provide logic-compatible waveforms, eliminating the need for additional wave shaping. The totem pole output eliminates the need for a pull up resistor and allows for direct drive Intelligent Power Module or gate drive. Minimized propagation delay difference between devices makes these optocouplers excellent solutions for improving inverter efficiency through reduced switching dead time. This optocoupler operational parameters are guaranteed over the temperature range from -40°C to +110°C.

FUNCTIONAL SCHEMATIC

Pin#	Name	Description
1	Anode	LED Anode
2	N.C.	N.C.
3	Cathode	LED Cathode
4	GND	Ground
5	Vo	Output Voltage
6	Vcc	Supply Voltage

FEATURESES

- Negative output type (totem pole output)
- Truth Table Guaranteed: Vcc from 4.5V to 30V
- Performance Specified for Common IPM Applications Over Industrial Temperature Range.
- Short Maximum Propagation Delays
- Minimized Pulse Width Distortion (PWD)
- Very High Common Mode Rejection (CMR)
- Hysteresis

APPLICATIONS

- IPM Interface Isolation
- Isolated IGBT/MOSFET gate drive
- AC and brushless DC motor drives
- Industrial Inverters
- General digital Isolation

SAFETY SPECIFICATION

- UL 1577
- VDE DIN EN/IEC 60747-5-5
- CQC GB4943.1-2011

TRUTH TABLE								
LED	OUT							
On	L							
Off	Н							

■ Note: A 0.1µF bypass capacitor must be connected between Pin 4 and Pin 6

ABSOLUTE MAXIMUM RATINGS								
PARAMETER	SYMBOL	MAX.	UNIT					
Storage Temperature	Tstg	-55	125	°C				
Operating Temperature	Topr	-40	110	°C				
Output IC Junction Temperature	TJ	-	125	°C				
Average Forward Input Current	lF	-	20	mA				
Reverse Input Voltage	VR	-	5	V				
Output Collector Current	lo	-	50	mA				
Supply Voltage	Vcc	0	35	V				
Output Collector Voltage	Vo	-0.5	Vcc	V				
Total Package Power Dissipation	Рт	-	145	mW				
Lead Solder Temperature	Tsol	-	260	°C				

[■] Note: A ceramic capacitor (0.1µF) should be connected between pin 6 and pin 4 to stabilize the operation of a high gain linear amplifier. Otherwise, this optocoupler may not switch properly. The bypass capacitor should be placed within 10mm of each pin.

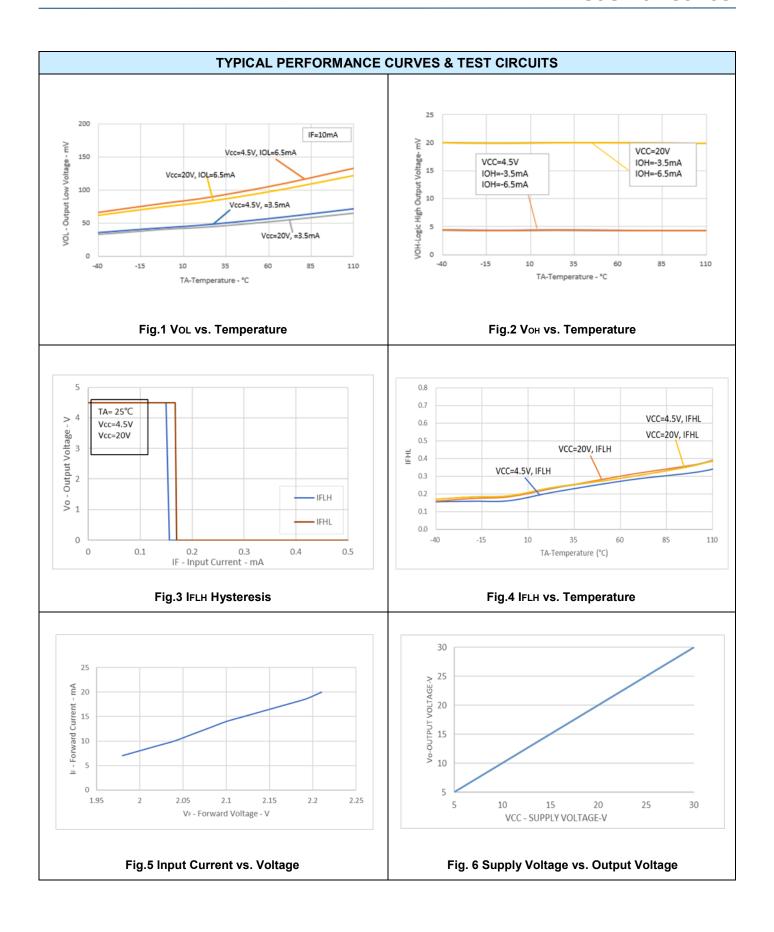
RECOMMENDED OPERATION CONDITIONS									
PARAMETER	SYMBOL MIN. MAX. UNIT								
Operating Temperature	ТА	-40	110	°C					
Supply Voltage (1)	Vcc	4.5	30	V					
Input Current (ON) (2)	lf(ON)	1.6	5	mA					
Input Voltage (OFF)	VF(OFF)		0.8	V					

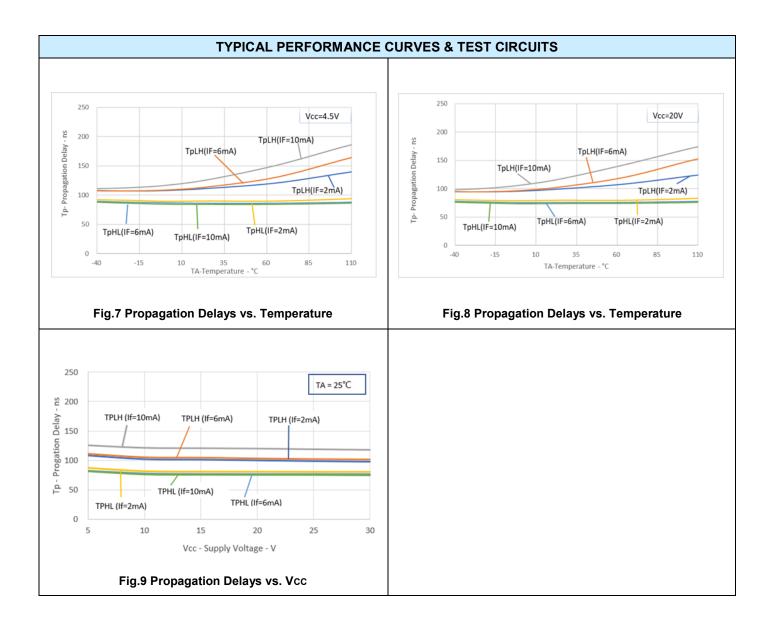
- Note (1): Detector requires a Vcc of 4.5V or higher for stable operation as output might be unstable if Vcc is lower than 4.5V. Be sure to check the power ON/OFF operation other than the supply current.
- Note (2): The initial switching threshold is 1.6mA or less. It is recommended that 2.2mA be used to permit at least a 20% LED degradation guard band.

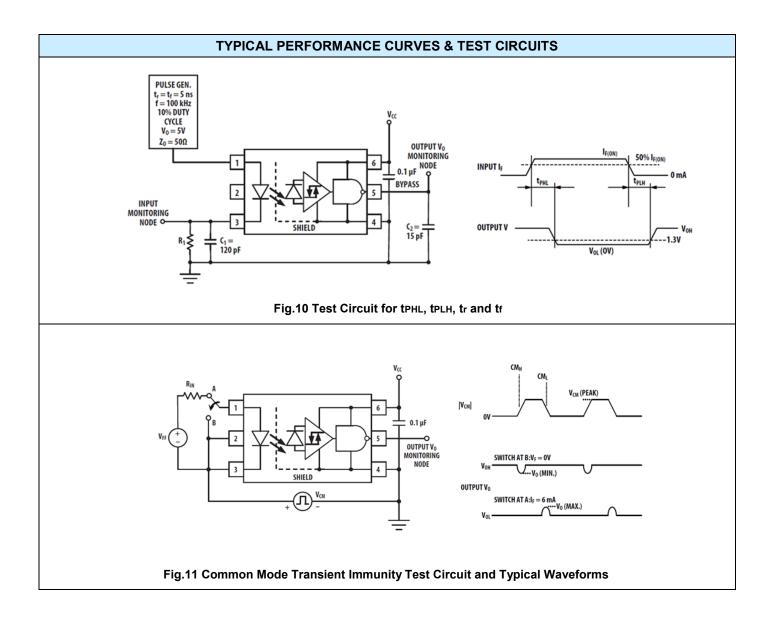
ELECTRICAL OPTICAL CHARACTERISTICS									
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITION			
INPUT CHARACTERISTICS									
Input Forward Voltage	VF	1.6	2.0	2.4	V	IF = 10mA			
Temperature Coefficient of Forward Voltage	ΔVF/ ΔΤ	-	-1.24	-	mV/°C	IF = 10mA			
Input Reverse Voltage	Bvr	5	-	-	V	IR = 10μA			
Input Threshold Current (Low to High)	IFLH	-	0.25	1.5	mA	Vcc = 30V, Vo > 5V			
Input Threshold Voltage (High to Low)	VFHL	0.8	-	-	V	Vcc = 30V, Vo < 5V			
Input Capacitance (2)	Cin	-	60	-	pF	VF = 0, f = 1MHz			
OUTPUT CHARACTERISTICS									
High Lord Complex Comment	Іссн	-	-	3		Vcc = 5.5V, VF = 0 V, Io = 0 mA			
High Level Supply Current			1.9	3	mA	Vcc = 30V, VF = 0 V, Io = 0 mA			
Law Law Comply Company	ICCL	-	-	3	0	Vcc = 5.5V, IF = 5mA, Io = 0 mA			
Low Level Supply Current			2	3	mA	Vcc = 30V, IF = 5mA, Io = 0 mA			
High Lovel Output Company (c)	lavi	-	-	-160	•	Vcc = 5.5V, V _F = 0 V, V _O = GND			
High Level Output Current (1)	Іон	-	-	-200	mA	Vcc = 20V, Vr = 0 V, Vo = GND			
Land and Outrat Organization	l	160	-	-		Vo = Vcc = 5.5V, IF = 5 mA			
Low Level Output Current (1)	lol	200	-	-	mA	Vo = Vcc = 20V, IF = 5 mA			
High Level Output Voltage	Vон	Vcc - 0.5	Vcc - 0.05	-	V	IoL = -6.5mA			
Low Level Output Voltage	Vol	-	0.09	0.5	V	IoL = 6.5mA			

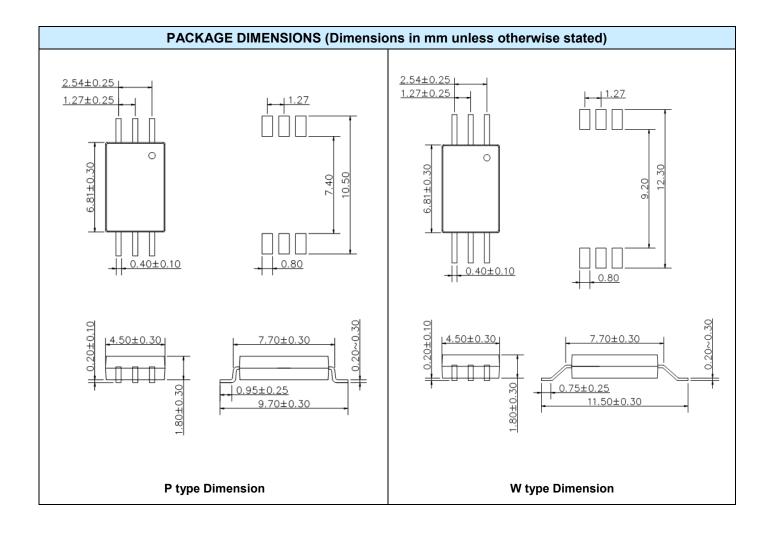
[■] Specified over recommended temperature (TA = -40°C to +110°C, +4.5V ≤ Vcc ≤ 30V), IF(ON) = 1.6mA to 5mA, VF(OFF) = 0 V to 0.8V, unless otherwise specified. All typical values at TA = 25°C.

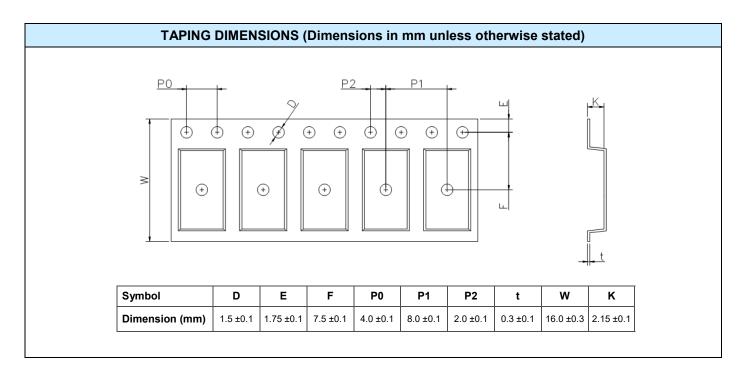
[■] Note (1): Duration of output short circuit time should not exceed 500µs.

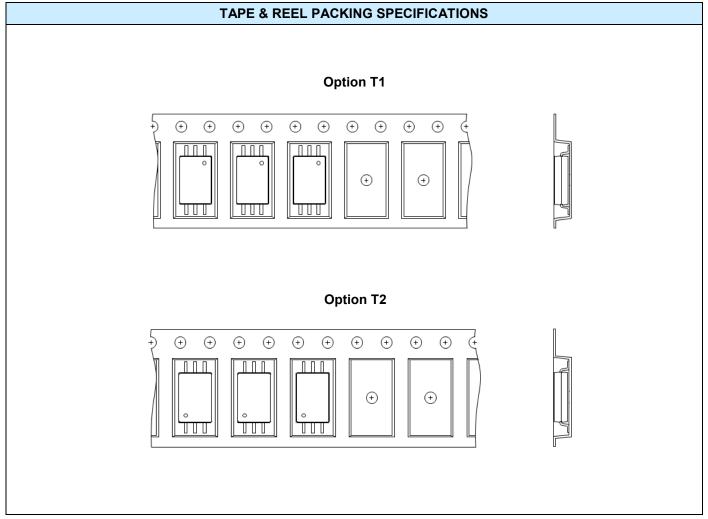

[■] Note (2): Input capacitance is measured between pin 1 and pin 3.

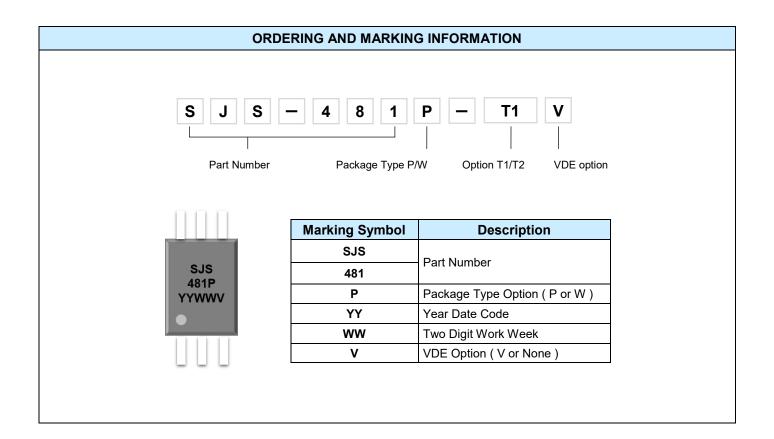

SWITCHING CHARACTERISTICS									
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITION			
Propagation Delay Time to Output Low Level (1)	tphl		90	220					
Propagation Delay Time to Output High Level (1)	tplH	•	110	220					
Pulse Width Distortion (2)	PWD	-	20	120		f = 10kHz, Duty Cycle = 50%,			
Propagation Delay Difference Between Any Two Parts (3)	PDD (tPHL - tPLH)	-200	-	200	ns	IF = 2mA, Vcc = 30V			
Rise Time	t,	-	6	-					
Fall Time	t,	-	7	-					
Common Mode Transient Immunity at Logic High ⁽⁴⁾	[СМн]	20	-	-	kV/μs	VF= 0 V, Vcc= 5V, TA= 25°C, VcM= 1.5kV			
Common Mode Transient Immunity at Logic Low ⁽⁴⁾	CML	20	-	-	kV/μs	IF= 4 mA, Vcc= 5V, Ta= 25°C, Vcm= 1.5kV			

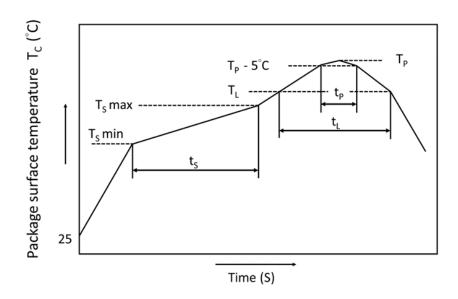

- Over recommended operating conditions TA = -40°C to 110°C, Vcc = +4.5V to 30V, IF(ON) = 1.6mA to 5mA, VF(OFF) = 0 V to 0.8V, unless otherwise specified. All typical values at TA = 25°C.
- Note (1): The tPLH propagation delay is measured from the 50% point on the leading edge of the input pulse to the 1.3V point on the leading edge of the output pulse. The tPHL propagation delay is measured from the 50% point on the trailing edge of the input pulse to the 1.3V point on the trailing edge of the output pulse.
- Note (2): Pulse Width Distortion (PWD) is defined as | tPHL tPLH | for any given device.
- Note (3): The difference of tplH and tpHL between any two devices under the same test condition.
- Note (4): CMH is the maximum slew rate of the common mode voltage that can be sustained with the output voltage in the logic high state, Vo > 2.0V. CML is the maximum slew rate of the common mode voltage that can be sustained with the output voltage in the logic low state, Vo < 0.8V
- Note: Equal value split resistors (Rin/2) must be used at both ends of the LED.


ISOLATION CHARACTERISTIC								
PARAMETER SYMBOL DEVICE MIN. TYP. MAX. UNIT TEST CONDITION								
Withstand Insulation Test Voltage (1) (2)	Viso	SJS-481P	5000	-	1	V	RH ≦ 40%-60%, t = 1min, TA = 25°C	
		SJS-481W						
Input-Output Resistance (1)	RI-0	-	-	10 ¹²	-	Ω	V _{I-O} = 500V DC	


- All Typical values at T_A = 25°C
- Note (1): Device is considered at two terminal device: pins 1, 2, 3 are shorted together and pins 4, 5, 6 are shorted together.
- Note (2): According to UL 1577, each photocoupler is tested by applying an insulation test voltage 6000VRMs for one second.







PRECAUTIONS FOR IR REFLOW SOLDERING

■ One time soldering reflow is recommended within the condition of temperature and time profile shown below. Do not solder more than three times.

DESCRIPTION	SYMBOL	MIN.	MAX.	UNIT
Preheat temperature	Ts	150	200	°C
Preheat time	ts	60	120	s
Ramp-up rate (TL to TP)			3	°C/s
Liquidus temperature	TL	217		°C
Time above TL	t∟	60	100	s
Peak Temperature	Tp		260	°C
Time during which Tc is between (TP-5) and TP	t₽		20	s
Ramp-down rate			6	°C/s

DISCLAIMER

- Our company is continually improving the quality, reliability, function and design. Our company reserves the right
 to make changes without further notices. The characteristic curves shown in this datasheet are representing typical
 performance which are not guaranteed.
- Our company makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Our company disclaims (a) any and all liability arising out of the application or use of any product, (b) any and all liability, including without limitation special, consequential or incidental damages, and (c) any and all implied warranties, including warranties of fitness for particular.
- The products shown in this publication are designed for the general use in electronic applications such as office automation, equipment, communications devices, audio/visual equipment, electrical application and instrumentation purpose, non-infringement and merchantability.
- This product is not intended to be used for military, aircraft, medical, life sustaining or lifesaving applications or any other application which can result in human injury or death.
- Please contact our company or sales agent for special application request.
- Immerge unit's body in solder paste is not recommended.
- Parameters provided in datasheets may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated in each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify our company's terms and conditions of purchase, including but not limited to the warranty expressed therein.
- Discoloration might be occurred on the package surface after soldering, reflow or long-time use. It neither impacts the performance nor reliability.