

Low Profile, 1.0 A Output Current Optocoupler Gate Driver

DESCRIPTION

The SJS-314 series consists of an light emitting diode optically coupled to an integrated circuit with a power output stage. This optocoupler is ideally suited for driving power IGBTs and MOSFETs used in motor control, switching mode power supply and solar inverter applications. The high operating voltage range of the output stage provides the drive voltages required by gate controlled devices. The voltage and current supplied by this optocoupler makes it ideally suited for directly driving high power IGBTs with ratings up to 50A / 1200V. This optocoupler operational parameters are guaranteed over the temperature range from -40°C to +110°C.

FUNCTIONAL SCHEMATIC

Pin#	Name	Description
1	Anode	LED Anode
2	N.C.	N.C.
3	Cathode	LED Cathode
4	Vss	Negative Supply Voltage
5	Vo	Output Voltage
6	Vcc	Positive Supply Voltage

FEATURESES

- 1.0 A maximum peak output current
- Rail-to-rail output voltage
- 110 ns maximum propagation delay
- Under Voltage Lock-Out protection (UVLO)
- Wide operating range from 10 to 30 Volts (Vcc)

APPLICATIONS

- Isolated IGBT/Power MOSFET gate drive
- Industrial Inverters
- AC brushless and DC motor drives
- Induction Heating
- Switch mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)

SAFETY SPECIFICATION

- UL 1577
- VDE DIN EN/IEC 60747-5-5
- CQC GB4943.1-2011

TRUTH TABLE									
LED	Vcc-Vss (Turn-ON, +ve going)	Vcc-Vss (Turn-OFF, -ve going)	Vo						
Off	0V to 30V	0V to 30V	Low						
On	0V to 6.9V	0V to 5.9V	Low						
On	6.9V to 8.7V	5.9V to 7.5V	Transition						
On	8.7V to 30V	7.5V to 30V	High						

■ Note: A 0.1µF bypass capacitor must be connected between Pin 4 and Pin 6

ABSOLUTE MAXIMUM RATINGS								
PARAMETER	SYMBOL	MIN.	MAX.	UNIT				
Storage Temperature	Tstg	-55	125	°C				
Operating Temperature	Topr	-40	110	°C				
Output IC Junction Temperature	TJ	-	125	°C				
Total Output Supply Voltage	(Vcc-Vss)	0	35	V				
Average Forward Input Current	lF	-	20	mA				
Reverse Input Voltage	VR	-	5	V				
"High" Peak Output Current (1)	IOH(PEAK)	-	1	А				
"Low" Peak Output Current (1)	IOL(PEAK)	-	1	А				
Output Voltage	Vo(PEAK)	-0.5	Vcc	V				
Power Dissipation	Рі	-	45	mW				
Output IC Power Dissipation	Po	-	250	mW				
Lead Solder Temperature	Tsol	-	260	°C				

[■] Ambient temperature at 25°C unless otherwise specified. Stresses exceeding the absolute maximum ratings can cause permanent damage to the device. Exposure to absolute maximum ratings for long periods of time can adversely affect reliability.

■ Note (1): Exponential waveform. Pulse width \leq 10 μ s, f \leq 15 kHz

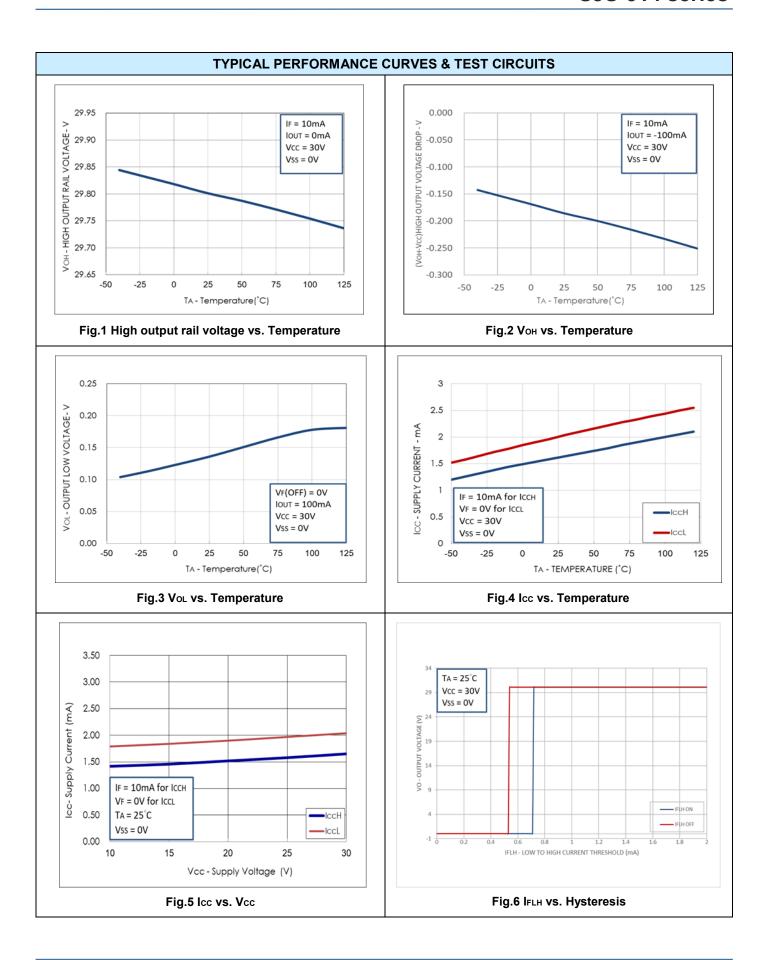
RECOMMENDED OPERATION CONDITIONS									
PARAMETER	SYMBOL MIN. MAX. UNIT								
Operating Temperature	TA	-40	110	°C					
Supply Voltage	Vcc	10	30	V					
Input Current (ON)	IF(ON)	7	16	mA					
Input Voltage (OFF)	VF(OFF)	-3	0.8	V					

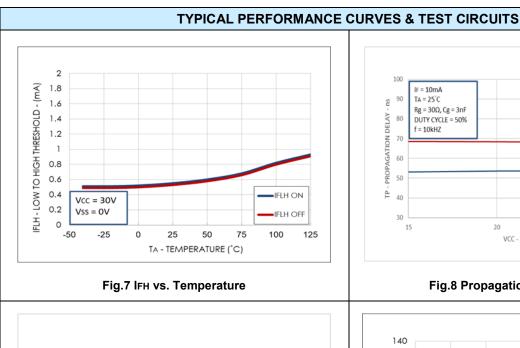
ELECTRICAL OPTICAL CHARACTERISTICS								
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	T TEST CONDITION		
INPUT CHARACTERISTICS								
Forward Voltage	VF	1.6	1.9	2.4	V	I==10mA		
Temperature Coefficient of Forward Voltage	ΔVF/ ΔΤ	-	-1.24	-	mV/°C	I==10mA		
Input Reverse Voltage	Bvr	5	1	-	V	IR=10μA		
Input Threshold Current (Low to High)	IFLH	-	0.6	2	mA	Vo > 5V, Io = 0A		
Input Threshold Voltage (High to Low)	VFHL	0.8	-	-	V	Vcc = 30V, Vo < 5V		
Input Capacitance	Cin	-	60	-	pF	VF = 0, f = 1MHz		
	0	UTPUT	CHARA	CTERIS	STICS			
High Level Supply Current	Іссн	-	1.55	3	mA	IF= 10mA, Vcc= 30V, Vo= Open, Rg= 30Ω , Cg= $3nF$		
Low Level Supply Current	ICCL	-	1.92	3	mA	IF= 0 mA, Vcc= 30V, Vo= Open, Rg= 30Ω , Cg= $3nF$		
High Level Output Voltage (2)(3)	Vон	29.4	29.7	-	٧	IF= 10mA, Io= -100mA		
Low Level Output Voltage	Vol	-	0.17	0.4	٧	IF= 0mA, Io= 100mA		
High Level Output Current (1)	Іон	1	-	-	Α	IF= 10mA, Vcc= 30V, Vo= Vcc - 4		
Low Level Output Current (1)	lol	1	-	-	Α	IF= 0mA, Vcc= 30V, Vo= Vss + 4		
Linder Voltage Leekeut Threshold	Vuvlo+	6.9	7.8	8.7	V	Vo > 5V, IF= 10mA		
Under Voltage Lockout Threshold	Vuvlo-	5.9	6.9	7.5	V	Vo < 5V, IF= 10mA		

[■] All Typical values at T_A = 25°C and Vcc – Vss = 30 V, unless otherwise specified; all minimum and maximum specifications are at recommended operating condition.

[■] Note (1): Maximum pulse width = 10 µs.

[■] Note (2): In this test VoH is measured with a DC load current. When driving capacitive loads, VoH will approach Vcc as IoH approaches zero amps.


[■] Note (3): Maximum pulse width = 1 ms.


SWITCHING CHARACTERISTICS									
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITION			
Propagation Delay Time to Output Low Level	tphl	1	54	110	ns				
Propagation Delay Time to Output High Level	tрLн	1	69	110	ns				
Pulse Width Distortion	PWD	-	22	70	ns	Rg = 30Ω , Cg = $3nF$, f = $10kHz$,			
Propagation Delay Difference Between Any Two Parts	PDD (tpHL - tpLH)	-100	-	100	ns	Duty Cycle = 50%, IF = 10mA, Vcc = 30V			
Rise Time	t _r	-	35	-	ns				
Fall Time	t _f	-	25	-	ns				
Common Mode Transient Immunity at Logic High ^{(1) (2)}	[СМн]	20	40	-	kV/μs	IF = 7 to 16mA, Vcc = 30V, TA = 25°C, VcM = 1kV			
Common Mode Transient Immunity at Logic Low ^{(1) (3)}	CML	20	40	-	kV/μs	IF = 0mA, Vcc = 30V, Ta= 25°C, Vcm = 1kV			

- All Typical values at TA = 25°C and Vcc Vss = 30 V, unless otherwise specified; all minimum and maximum specifications are at recommended operating condition.
- Note (1): Pin 2 needs to be connected to LED common.
- Note (2): Common mode transient immunity in the high state is the maximum tolerable dVCM/dt of the common mode pulse, VCM to assure that the output will remain in the high state (meaning Vo > 10.0V)
- Note (3): Common mode transient immunity in a low state is the maximum tolerable dVCM/dt of the common mode pulse, VCM to assure that the output will remain in a low state (meaning Vo < 1.0V)

ISOLATION CHARACTERISTIC									
PARAMETER	SYMBOL	DEVICE	MIN.	IIN. TYP. MAX. UNIT TEST CONDITION					
Withstand Insulation Test Voltage (1) (2)	Viso	SJS-314P	5000	-	-	V	DIL < 400/ 000/ 4 - 4min Tr - 20°0		
		SJS-314W				V	RH ≤ 40%-60%, t = 1min, T _A = 25°C		
Input-Output Resistance (1)	Rı-o	-	1	10 ¹²	-	Ω	VI-0 = 500V DC		

- All Typical values at Ta = 25°C and Vcc Vss = 30 V, unless otherwise specified; all minimum and maximum specifications are at recommended operating condition.
- Note (1): Device is considered at two terminal device: pins 1, 2, 3 are shorted together and pins 4, 5, 6 are shorted together.
- Note (2): According to UL 1577, each photocoupler is tested by applying an insulation test voltage 6000VRMs for one second. This test is performed before the 100% production test for partial discharge.

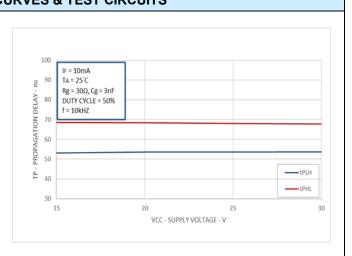
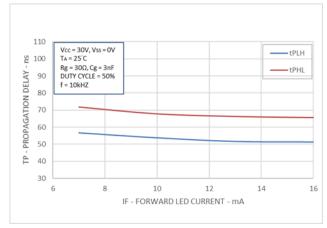



Fig.8 Propagation Delays vs. Vcc

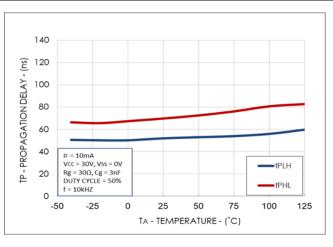


Fig.10 Propagation Delays vs. Temperature

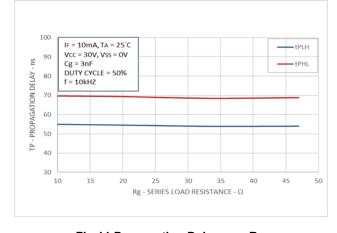
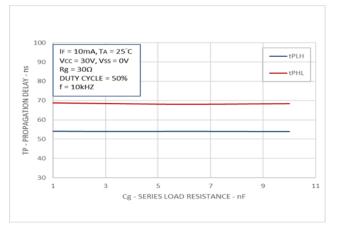
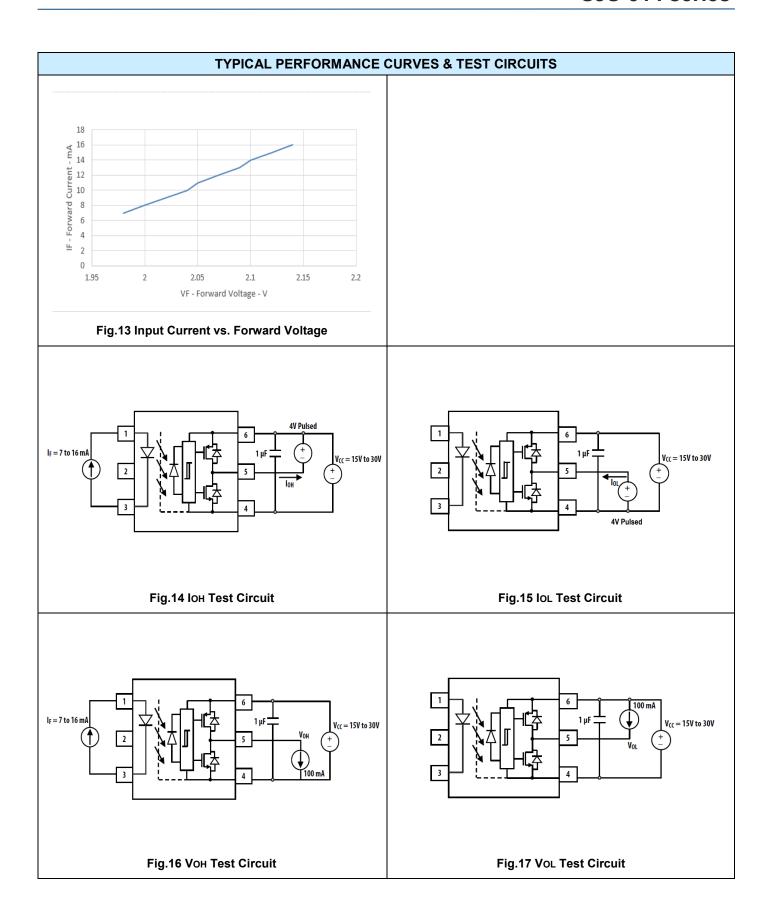
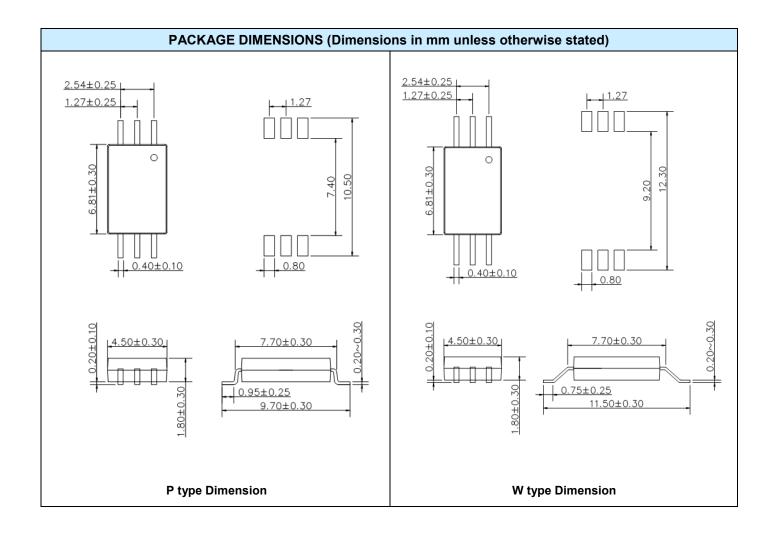
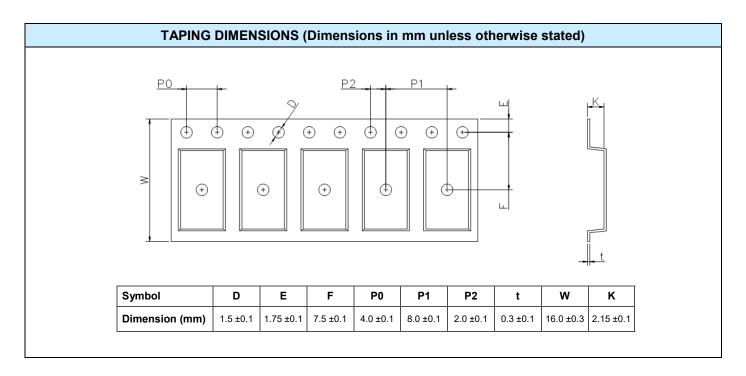
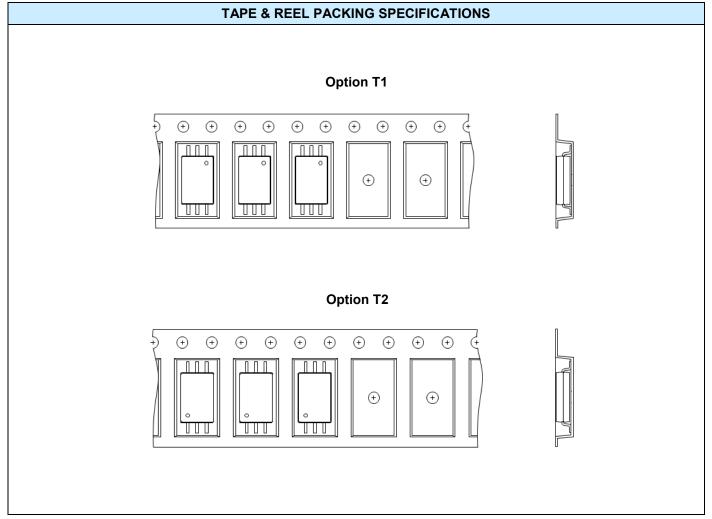
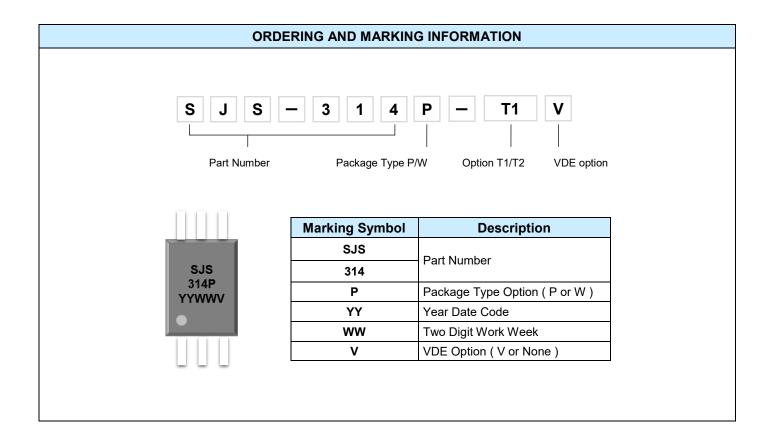


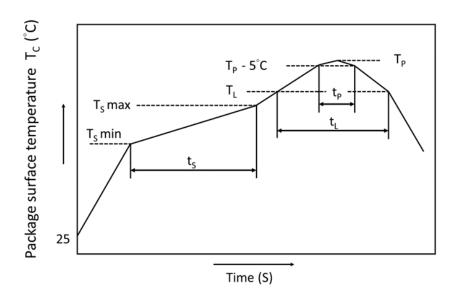
Fig.11 Propagation Delays vs. Rg


Fig.12 Propagation Delays vs. Cg




TYPICAL PERFORMANCE CURVES & TEST CIRCUITS $I_F = 7 \text{ to } 16 \text{ m/s}$ $V_{CC} = 15V \text{ to } 30V$ $V_0 > 5V$ Fig.19 UVLO Test Circuit Fig.18 IFLH Test Circuit V_{CC} = 15V to 30V I_F = 7 to 16 mÅ, 20 kHz, 50% Duty Cycle 20% → t_{PHL} Fig.20 tphL, tpLH, tr and tf Test Circuit and Waveforms 200Ω $V_{CC} = 30V$ SWITCH AT A: IF = 10 mA SWITCH AT B: Ip = 0 mA V_{CM} = 1000V Fig.21 CMR Test Circuit with Split Resistors Network and Waveforms


9

PRECAUTIONS FOR IR REFLOW SOLDERING

■ One time soldering reflow is recommended within the condition of temperature and time profile shown below. Do not solder more than three times.

DESCRIPTION	SYMBOL	MIN.	MAX.	UNIT
Preheat temperature	Ts	150	200	°C
Preheat time	ts	60	120	S
Ramp-up rate (TL to TP)			3	°C/s
Liquidus temperature	TL	21	7	°C
Time above TL	t∟	60	100	S
Peak Temperature	ТР		260	°C
Time during which Tc is between (Tp-5) and Tp	t₽		20	s
Ramp-down rate			6	°C/s

DISCLAIMER

- Our company is continually improving the quality, reliability, function and design. Our company reserves the right
 to make changes without further notices. The characteristic curves shown in this datasheet are representing typical
 performance which are not guaranteed.
- Our company makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Our company disclaims (a) any and all liability arising out of the application or use of any product, (b) any and all liability, including without limitation special, consequential or incidental damages, and (c) any and all implied warranties, including warranties of fitness for particular.
- The products shown in this publication are designed for the general use in electronic applications such as office automation, equipment, communications devices, audio/visual equipment, electrical application and instrumentation purpose, non-infringement and merchantability.
- This product is not intended to be used for military, aircraft, medical, life sustaining or lifesaving applications or any other application which can result in human injury or death.
- Please contact our company or sales agent for special application request.
- Immerge unit's body in solder paste is not recommended.
- Parameters provided in datasheets may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated in each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify our company's terms and conditions of purchase, including but not limited to the warranty expressed therein.
- Discoloration might be occurred on the package surface after soldering, reflow or long-time use. It neither impacts
 the performance nor reliability.